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Introduction

Elastic-plastic problems have traditionally been one of the more difficult

problems to solve. This was due to the analytical difficulties caused by a

moving elastic-plastic boundary and a nonlinear stress strain relation. The

earlier solutions were mostly confined to elastic-perfectly plastic analysis

of problems with simple geometry and axial symmetry such as thick-cylinders [1-3]

under internal pressure. Allen and Southwell [4], by using a stress function

for the elastic and elastic-plastic region were able to find relaxation solu-

tions to two-dimensional elastic-plastic problems.

The advent and widespread use of the digital computer has recently led to

the solution of many important elastic-plastic problems. Many of these problems

have a bearing on and were originally formulated in connection with pressure

vessels and other piping components.

Over the past decade two distinct methods have been evolved to solve the

elastic-plastic problem. Mendelson and Manson [5] introduced the method of

thermal or initial strains using the deformation theory of plasticity. In

this approach, the equilibrium equations and the plastic strains are solved

for in an iterative manner. The effect of the plastic straining is brought

in as a pseudo-load on the right-hand side of the equilibrium equations. This

method was first applied to shells of revolution by Stern [6]. Spera [7]

extended the analysis to account for discontinuous shells by using a more

general finite difference method. The initial strains method was subsequently

modified by Stern [8] and Mendelson [9] to use the incremental theory of

plasticity. The method has been widely used in conjunction with finite element

analysis [10-13]. Convergence problems have been encountered with this method

in its differential equation formulation. Mendelson [9] in an alternative

formulation in terms of strains, has found improved convergence.
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The other approach to the elastic-plastic problem will be referred to

here as the tangent modulus method. The writer and his colleagues [14-18]

have also referred to it as the "stiffness method" but in view of its use

with the direct stiffness method in finite element analysis, the continuation

of the latter terminology could cause confusion.

The essence of the tangent modulus method is to obtain a linear stress

strain relation for an increment of load. The full analysis is carried out

in increments and the elastic-plastic body behaves as though it were made of

a piecewise linear anisotropic elastic material. The tangent modulus method

has recently been combined with the finite element method [19-22]. With

reference to pressure vessel and piping components. Marcal and King [21]

have applied the tangent modulus method to study axi-symmetric solid bodies

of revolution and Khojasteh-Bakht [22] has used the method in an analysis of

the axi-symmetric shell of revolution.

Marcal [23] has noted the close relationship between the two methods of

elastic-plastic analysis and has shown that both methods can be based on the

linear incremental stress-strain relations for an elastic-plastic material.

Because of its importance, the formulation of a linear incremental

stress-strain relation will be reviewed in this survey. This relation is

then used to form piecewise linear generalized stress strain relations for

plates and shells. The theoretical discussion is then followed by case studies

of three examples relevant to pressure vessel design.
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Theoretical Considerations

In this section we shall establish the linear incremental stress strain

relation for an elastic-plastic material. The material behavior is governed

by the incremental theory of plasticity and the von Mises yield criterion.

It is assumed to work-harden according to an isotropic strain hardening criterion.

Earlier work resorted to the inversion of a matrix because of the need to

avoid division by zero in the case of an elastic-perfectly plastic material [151.

However, recent formulations [24,25] have circumvented this and allow the

linear incremental relations to be obtained in closed form for all cases of

elastic-plastic behavior.

We shall adopt matrix notation for the following formulation of the

stress strain relations. The plastic increment of strain {de } is given by

the normal flow rule of plasticity,

{dep} de (1)

where de is the equivalent plastic strainp

a is the equivalent yield stress

{a} is the stress vector

and the prefix d is used to denote an increment.

The von Mises yield criterion is now written in incremental form

I {da} = do = H'de (2)
Lao p

where H' is the slope of the equivalent stress equivalent strain curve and

L J is used to denote a row vector. Because the elastic components of strains

are the only strains that can be associated with changes in stresses, the

increment of stress is related to the increment of strain by
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{do) = [S] {dee I = [S]({de} - {de p}) (3)

where [S] is the elastic strain to stress transformation matrix

{de) is the total increment of strain

and the subscript e is used to denote the elastic component of strain.

By multiplying (3) by [aJ and using (1) and (2), we obtain an

expression for the equivalent plastic strain increment de
p

d[J [S]{de}
H' + 8• [S]{•

Substituting for the equivalent plastic strain in (3) and rearranging, we

obtain the required linear incremental stress strain relation

{do} = ([S] - - =-){de} (5)
H' + [S] {i.}

The term in the bracket of (5) may be interpreted as the required correction

to the elastic stress strain relation which keeps the stress increment on the

expanding yield surface (or tangential to the yield surface in the case of an

elastic-perfectly plastic material). An examination of the numerator of the

second term in the bracket shows that the term is symmetric. This linear

relation is, of course, the same relation as that found previously in the

earlier works [15,19,20].

The matrix [p-1 first introduced in [23] will be used to refer to this term
in subsequent discussion.
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Note on the Transition Region

Because the solution takes place in increments a small region adjacent to

the elastic-plastic interface starts out as elastic and ends up by being

elastic-plastic. This has been called the transition region. By suitably

weighting the elastic and the elastic-plastic stress strain relations, it

has been found possible to reduce the number of increments required for a full

elastic-plastic solution [21]. If m is the proportion of the strain increment

required to cause yield during that increment, the weighted stress strain relation

for the transition region becomes

{da} = ([S] - a (del (6)

Piecewise Linear Generalized Stress Strain Relations

The linear relation (5) can now be used to form linear generalized stress

strain relations for a plate or a shell by integrating through the thickness.

The strain increment at a point in a shell is given by the sum of the

mid-wall and bending components.

{del = {de} + z{dk} (7)

where {del is the mid-wall component of the strain increment

{dk} is the bending component of the strain increment, and

z is the distance from the center of the shell wall

The increment of the direct {dNl and bending {dM1 stress resultants are

given by integrating through the thickness
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H

IdN}I J {AL dz (8)

where H is the half-wall thickness. Substituting (5) and (7) in (8), we

obtain

H d

dM ~-H [p ]zj[p_1 2]j

The shell wall is divided into a number of stations through the thickness

(say 11). The stress history is kept for each of these stations. The matrix

[p-] is evaluated at the start of each increment for each station and the matrix of

equation (9) is formed by numerical integration through the thickness. The

actual manner of using equation (9) in an elastic-plastic shell solution

depends on the type of shell theory used, i.e., to say whether it results in

a differential equation or a matrix equation as in the finite element method.

In the case of a differential equation formulation, terms exist which require that

equation (9) be further differentiated by some independent variable of length

(see, for instance, [15]). In either case the substitution is straightforward

and it is not proposed to enter into details here. The interested reader is

referred to the references already cited.

Case Studies

In this section we illustrate the kinds of analysis that can be performed

by existing elastic-plastic computer programs. The examples are taken from

work with which the writer has been associated because of his greater familiarity

with the material. Other results can, of course, be found in the references

already given.
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1. Torispherical Pressure Vessel

The mild-steel torispherical vessel shown in Fig. 1 was tested by Stoddart

and Owen [26] and analyzed in the elastic perfectly plastic region by

Marcal and Pilgrim [16]. Figure 1 also shows the elastic strain distribution.

Good agreement was found between theory and experiment. Figure 2 gives a comparison

of the elastic-plastic strains at the position of maximum meridional strain(450 station).

Good agreement was again found between theory and experiment. Figure 2 also shows an

interesting feature of most elastic-plastic shells in bending and that is the small

value of strain reached at the maximum pressure. This point should be borne

in mind when materials of construction are being chosen. Figure 3 shows the

progress of the yielding throughout the shell. Loads are marked next to the

corresponding elastic-plastic interface. The loads are given in dimensionless

form where 1 unit is equal to the load at first yield.

2. Flush Nozzle with Fillet Weld

The second example considers the behavior at the junction of a flush

cylindrical nozzle with a spherical shell. It'shows that additional consid-

erations must be introduced in studying shell intersection problems. The

theoretical work of Marcal and Turner [17] followed the thesis of O'Connel

and Chubb [27) that the line loads caused by an adjoining shell should be

spread over a band. The basic difference between the concept of a simple

shell theory and the equivalent band replacement theory can best be understood

by referring to Fig. 4. Figure 4a shows a flush nozzle with a fillet weld.

The dimensions of the lengths of the zones, a and b are marked on the

cylinder (shell A ) and the sphere (shell B); a and b are interpreted as

the lengths along the shell which are attached to the thickness of the adjacent

shell. Figure 4b and 4c shows the shell mid-radii where the shell section

appears as a line. In Fig. 4b the concentrated line loads are shown acting at
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the junction. The bands of equivalent pressures are shown in Fig. 4c. The

radial force F has been replaced by a radial pressure pF = F/a on shell A,

but remains as a line load F acting along the center-line of shell B.

Similarly, the axial force W has been replaced by an axial pressure pW = W/b

on shell B whilst remaining as a line load W acting along the center-line

of shell A.

Flush nozzles with fillet welds were tested by Dinno and Gill [28]. The

dimensions for two of these nozzles are shown in Table 1 while the results

are shown in Figs. 5 and 6. Figure 5 gives the pressure vertical displacement

curve at the junction. The results from the equivalent band replacement

theory are shown as full lines while the results of the simple shell theory

are in dotted lines. Experimental limit pressures obtained by Dinno and Gill

are also shown. Figure 6 shows the pressure maximum meridional strain curves.

Finally, Table 2 summarizes the experimental results obtained for the two

vessels. Agreement between the band theory and experiment is good and the

necessity of using an equivalent band theory instead of the simple shell

theory is clearly established. Similar results with a less striking difference

between the two shell theories were observed for the flush nozzles without

fillet welds tested by Cloud [29].

3. Thick Cylinder with Internal Pressure

The final example is that of a thick cylinder under internal pressure.

The assumption of a plane strain end condition was made. The thick pressure

vessel was analyzed by the finite element method using the tangent modulus

method [21]. The finite element analysis was made by subdividing the vessel

into rings with triangular cross sections as suggested by Cloughand Rashid [30]. This

idealization is shown in Fig. 7. Figure 8 gives a comparison between the

results for the finite element method and a numerical procedure developed by
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Hodge and White [3]. The cylinder studied had a 2 to 1 diameter ratio and

an elastic-perfectly plastic material was assumed.

Conclusions and Recommendations for Future Work

Linear incremental stress strain relations exist for a Prandtl-Reuss

material with a von Mises yield criterion. The linear incremental relations

can be used to form piecewise linear generalized stress strain resultants.

This reduces the difficulty of performing an elastic-plastic analysis to a

similar level as that of performing a series of anisotropic elastic analyses.

The next theoretical advance would appear to be the inclusion of the linear

stress strain relations in a large displacement shell analysis.

A few computer programs already exist for the elastic-plastic analysis

of axi-symmetric pressure vessels and its components. Many others are under

active development. These programs are being developed at such a rate and in

so general a form that there is a risk that our understanding of elastic-plastic

pressure vessel behavior may be outstripped by our analytical ability. In

particular, much work remains to be done in understanding the behavior of

end-closures of thick pressure vessels. Here the use of the finite element

analysis can contribute towards the study of threaded end plugs as well as

torispherical end-closures.

Finally, it is relevant to point out that the translation of the recent

theoretical and experimental advances into meaningful design codes has yet to

be pursued.

jb
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Table 1. Test vessel data from reference [28]
all dimensions in inches

Nozzle D1 D5

Branch radius, r 2.875 2"875

Branch thickness, t 0"125 0"125

Sphere radius, R 8"843 8"812

Sphere thickness, T 0.312 C.250

t/T " r/R 0,4 0"5

r/T 23.0 23.0

R/T 28-34 35.25

Thickness + fillet a 0-812 0.425

Thickness + fillet b 0.710 0.545

Yield stress, lb/in2

Branch 44.000 44•300

Sphere 39.200 38•800



Table 2. Limit of proportionality and limit load
pressures All pressures in lb/in2 .

Nozzles D1 D5

Limit of proportionality:
From experimental de-

flections 800 800

Present theory 740 630

Simple shell theory 400 340

Estimated limit load:
Experimental 1360 1180

Present theory at 1 5 per
cent strain) 1320 1070

Present theory at instab-
ility 1350 1135

Limit analysis 7p/8 1110 855

Limit analysis p 1270 980

Simple shell theory 508 .505

rT .
J •7



FIGURE CAPTIONS FOR PAPER BY MARCAL

Fig. 1 Stress distribution for torispherical vessel, internal pressure
100 lb/in2 .

Fig. 2 450 Station surface strains.

Fig. 3 Progressive yielding.

Fig. 4 Shell junction representations.

Fig. 5 Pressure displacement curves for flush nozzle.

Fig. 6 Pressure maximum meridional strain curves for flush nozzle.

Fig. 7 Rotated triangular element.

Fig. 8 Pressure surface strain curves for thick cylinder.
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